Ввод трансформаторов в эксплуатацию

Со 34.46.611-2005 типовая технологическая инструкция. ремонт высоковольтных вводов классов напряжения 35 кв и выше

Ввод трансформаторов в эксплуатацию

Открытое акционерное общество РАО «ЕЭС России»

Открытое акционерное общество «ЦКБ Энергоремонт»

СТАНДАРТ ОРГАНИЗАЦИИ

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ ИНСТРУКЦИЯ

РЕМОНТ ВЫСОКОВОЛЬТНЫХ ВВОДОВ КЛАССОВ НАПРЯЖЕНИЯ
35 кВ И ВЫШЕ

СО 34.46.611-2005

Вводится в действие с 01.02.2005 г.

ПРЕДИСЛОВИЕ

1. Разработан ОАО «ЦКБ Энергоремонт».

Исполнители: Ю.В. Трофимов, Л.Л. Федосов, В.В. Нечушкин, Л.Г. Федосова.

2. Взамен «Ремонта вводов напряжением 35 кВ и выше» Э-752, ЦКБ Энергоремонт, 1992 г.

3. Настоящий стандарт организации (СО) является переизданием «Ремонта вводов напряжением 35 кВ и выше» Э-752, выпущенного в 1992 году в качестве хоздоговорной работы.

В настоящем СО учтены изменения нормативных документов Госстандарта РФ, органов Государственного надзора и отраслей промышленности.

В СО внесены также необходимые изменения по наименованиям, обозначениям и отдельным требованиям нормативных документов.

1. ВВЕДЕНИЕ2. ОБЩИЕ ПОЛОЖЕНИЯ.3. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ РАБОТАХ ПО РЕМОНТУ ВЫСОКОВОЛЬТНЫХ ВВОДОВ.4. КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ, УСЛОВНЫЕ ОБОЗНАЧЕНИЯ, НОМЕНКЛАТУРА И ВЗАИМОЗАМЕНЯЕМОСТЬ ВЫПУСКАЕМЫХ ВВОДОВ.5. ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ ВВОДОВ И МЕТОДЫ ИХ УСТРАНЕНИЯ6. ВВОДЫ КЛАССА НАПРЯЖЕНИЯ 35 кВ7. ЗАМЕНА МАСЛА ВО ВВОДЕ8. ЗАМЕНА МАСЛА В БАКЕ ДАВЛЕНИЯ И ПРИСОЕДИНЕНИЕ К ВВОДУ9. ЗАМЕНА ВВОДА10. РАЗБОРКА И СБОРКА ВВОДОВ В РЕМОНТНОЙ МАСТЕРСКОЙ11. ВАКУУМНАЯ ОБРАБОТКА И ЗАПОЛНЕНИЕ ВВОДА МАСЛОМ12. СУШКА ИЗОЛЯЦИИ13. РЕМОНТ ФАРФОРОВЫХ ПОКРЫШЕК14. ЗАМЕНА ИЗОЛЯТОРА ИЗМЕРИТЕЛЬНОГО ВЫВОДА15. ЗАМЕНА ПОВРЕЖДЕННОГО СТЕКЛА МАСЛОУКАЗАТЕЛЯ16. РЕМОНТ ДЕТАЛЕЙ ВВОДА ИЗ ЧУГУННОГО И АЛЮМИНИЕВОГО ЛИТЬЯ17. ЗАМЕНА МАНОМЕТРА И РЕГУЛИРОВАНИЕ ДАВЛЕНИЯ У ГЕРМЕТИЧНЫХ ВВОДОВ18. НАМОТКА ИЗОЛЯЦИОННЫХ СЕРДЕЧНИКОВ ВВОДОВ И СУШКА19. СКЛЕИВАНИЕ ИЗДЕЛИЙ ИЗ ФАРФОРА20. ИЗМЕНЕНИЕ ПОКАЗАТЕЛЕЙ ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА РАСТВОРЕННЫХ В МАСЛЕ ГАЗОВ21. ВОССТАНОВЛЕНИЕ ПРОВОДЯЩЕГО ПОКРЫТИЯ22. ВОССТАНОВЛЕНИЕ ИЗОЛЯЦИОННОГО ПОКРЫТИЯ НИЖНЕГО ЭКРАНА ВВОДАПриложение 1 ТАКЕЛАЖНЫЕ РАБОТЫПриложение 2 АРМИРОВОЧНЫЕ ЗАМАЗКИ ДЛЯ ВВОДОВПриложение 3 ЗАЛИВКА ВВОДОВ МАСТИКОЙПриложение 4 ОСНОВНЫЕ СВОЙСТВА КЛЕЕВЫХ СОСТАВОВПриложение 5 ВОССТАНОВЛЕНИЕ И ПРИГОТОВЛЕНИЕ ИНДИКАТОРНОГО СИЛИКАГЕЛЯПриложение 6 ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ ВНУТРЕННЕЙ ИЗОЛЯЦИИ ВЫСОКОВОЛЬТНЫХ ВВОДОВ КЛАССОВ НАПРЯЖЕНИЯ 66-750 кВПриложение 7 ПЕРЕЧЕНЬ ОБОРУДОВАНИЯ ДЛЯ РЕМОНТА ВЫСОКОВОЛЬТНЫХ ВВОДОВ

1. ВВЕДЕНИЕ

Требования настоящего стандарта организации (СО), далее типовой технологической инструкции распространяется на ремонт высоковольтных вводов классов напряжения 35 кВ и выше силовых масляных трансформаторов* независимо от типа и мощности.

* Далее в тексте под термином «трансформаторы» будут подразумеваться трансформаторы, автотрансформаторы и реакторы.

Типовая технологическая инструкция рекомендуется к применению для предприятий и организаций, производящих ремонт, принимающих из ремонта и эксплуатирующих отремонтированные трансформаторы, а также для организаций, разрабатывающих техническую документацию на ремонт оборудования.

Типовая технологическая инструкция содержит порядок выполнения технологического процесса ремонта, а также устанавливает требования к материалам, применяемым при ремонте, и требования к ведению ремонта.

Ремонт конкретного ввода должен производиться в соответствии с настоящей типовой технологической инструкцией и конструкторской документацией (далее чертежа). При необходимости, ремонтное предприятие, ведущее ремонт, может разработать дополнительную ремонтную документацию.

2. ОБЩИЕ ПОЛОЖЕНИЯ.

Вводы представляют собой проходные изоляторы больших габаритов и сложной конструкции (см. рис. 1). Длина ввода на класс напряжения 35 кВ составляет 670 мм, а на класс напряжения 750 кВ – 8500 мм.

а – фарфоровые;

б – мастичные;

в – бакелито-бумажные без покрышки;

г – бакелито-бумажные мастиконаполненные;

д – маслобарьерные;

е – бумажно-масляные малогабаритные.

Рис. 1. Конструкция вводов.

Большие габариты и вес, а также особенности материала изоляции и условий работы в эксплуатации являются основными причинами усложнения технологии изготовления и ремонта высоковольтных вводов.

Высоковольтные вводы применяют для вывода проводов высокого напряжения из баков трансформаторов, масляных выключателей, а также для прокладки проводов через стены зданий.

Вводы могут удовлетворительно работать на высоте не более 1000 м над уровнем моря и в интервале температур – 40°С до + 45°С при относительной влажности до 85%.

Некоторые конструкции вводов, изготовленные по другим техническим требованиям, работают в более тяжелых окружающих условиях.

Высоковольтные вводы наружной установки, как правило, имеют оребренную фарфоровую покрышку. Далеко выступающие ребра защищают от дождя расположенные под ними части изолятора. Этим достигается сохранение необходимого уровня изоляции при воздействии на изолятор дождя.

Высоковольтные вводы делятся по их конструктивному исполнению на герметичные, негерметичные и маслоподпорные (см. рис. 2, 3, 4, 5).

Внутренняя изоляция герметичных вводов не имеет сообщения с окружающей средой. У негерметичных вводов масло, заполняющее их, имеет сообщение с окружающей средой через масляный затвор и осушитель воздуха. Последние задерживают увлажнение и окисление масла. Маслоподпорные вводы герметичные, но имеют общую масляную систему с оборудованием, на котором они устанавливаются.

1 – контактная клемма 2 – компенсатор давления; 3, 8 – фарфоровые покрышки; 4 – манометр; 5 – вентиль; 6 – грузовые косынки; 7 – втулка; 9 – экран; 10 – вывод; 11 – газоотводный патрубок 1 , 6 – фарфоровые покрышки; 2 – манометр; 3 – бак давления; 4 – трубопровод; 5 – втулка; 7, 8 – экраны
Рис. 2. Герметичный ввод на класс напряжения 110 кВ. Рис. 3. Герметичный ввод на класс напряжения 500 кВ.

1 – контактная клемма; 2 – компенсатор давления; 3, 6 – фарфоровые покрышки; 4 – измерительный ввод; 5 – соединительная втулка; 7 – контактный наконечник; 8 – грузовая косынка

Рис. 4. Герметичный ввод для масляных выключателей на класс напряжения 220 кВ.

1 – контактная клемма; 2 – колпак давления; 3 – верхняя фарфоровая покрышка; 4, 12, 17 -резиновые прокладки; 5 – соединительная втулка; 6 – измерительный ввод; 7 – изоляционный сердечник; 8 – медная труба; 9 – газоотводный патрубок; 10 – грузовая косынка; 11 – болты; 13, 20 -гайки; 14 – диафрагма; 15, 16 -фланцы; 18 -масло; 19 – пружина; 21 – контактная шпилька.

Рис. 5. Ввод с твердой изоляцией на класс напряжения 110 кВ.

3. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ РАБОТАХ ПО РЕМОНТУ ВЫСОКОВОЛЬТНЫХ ВВОДОВ.

3.1. Помещения для хранения огнеопасных и взрывчатых растворителей и веществ, содержащих их, должны быть снабжены противопожарными средствами (песок, кошма, огнетушители, вода).

Электрооборудование этих помещений должно удовлетворять требованиям « Правил устройства электроустановок», седьмое издание, утвержденное Приказом Минэнерго России от 20.06.2003 г. № 242. Протирочный материал хранить запрещается. Наполненная или пустая тара указанных веществ должна быть плотно закрыта крышками или пробками.

Пустая тара должна быть промыта горячей водой и храниться в закрытом виде на площадках на расстоянии не менее 10 метров от рабочих помещений.

3.2. В помещениях хранения растворителей и веществ, их содержащих, запрещается производство газо- и электросварочных работ, пользоваться ударным или рубящим инструментом, иметь пожароопасные материалы больше суточной потребности. Работы с пульверизатором производить только в респираторах.

3.3. Помещение, где производится варка мастик, должно быть оборудовано приточно-вытяжной вентиляцией и средствами пожаротушения.

Над варочным баком и над местом, где производится фильтрация массы, должны быть вытяжные колпаки, в аппаратуре, подающей аммиак, должна быть обеспечена полная герметизация.

При изготовлении заливочной массы обслуживающий персонал должен применять рукавицы и очки. Во время пропускания через массу аммиака (в течение первых 6 часов) работать в противогазах ПШ или КД.

3.4. При изготовлении глетоглицериновой замазки, обслуживающий персонал должен применять респиратор, а после каждой армировки мыть руки горячей водой с мылом.

3.5. При работе с эпоксидными клеем и шпатлевкой, необходимо проводить соответствующий инструктаж, надевать резиновые перчатки и защитные очки.

3.6. Все работы с лакокрасочными материалами и отвердителями, разбавление растворителем и определение вязкости должны проводится в помещении, оборудованном приточно-вытяжной вентиляцией, или на улице при условии отсутствия поблизости открытого огня.

3.7. Все отходы при производстве ремонтных работ (опилки, тряпки, пропитанные вредными веществами) собирать в отдельные емкости и захоранивать в землю в отдельно отведенных местах.

3.8. Категорически запрещается прием пищи во время работы.

3.9. При попадании ядовитых и токсичных веществ на кожу, в глаза и другие органы, необходимо промывать теплой водой с мылом.

3.10. При всяких кожных раздражениях, при плохом самочувствии во время или после работы, необходимо немедленно обратиться к врачу. Одежду, облитую отвердителями или веществами, их содержащими, необходимо заменить.

3.11. Все токсичные вещества и вещества, их содержащие, не должны разливать на полу или рабочем месте; при случайной разливке их, необходимо все облитые места засыпать опилками с последующей их уборкой в специальные ящики.

3.12. Загрязненный растворитель, опилки, керосин и раствор кислоты после дегазации запрещается сливать в канализацию или реку.

3.13. Такелажные работы проводить, принимая во внимание указания приложения 1.

4. КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ, УСЛОВНЫЕ ОБОЗНАЧЕНИЯ, НОМЕНКЛАТУРА И ВЗАИМОЗАМЕНЯЕМОСТЬ ВЫПУСКАЕМЫХ ВВОДОВ.

Герметичные вводы с твердой изоляцией (рис. 5) состоят из твердого изолированного остова, изготовленного намоткой на центральную трубу ввода лакированной электроизоляционной бумаги с последующей термообработкой. Для выравнивания электрического поля бумажная намотка разделена на слои проводящими обкладками.

На изоляционный остов напрессована соединительная втулка 5, предназначенная для крепления ввода на баке трансформатора.

Верхняя часть остова (до втулки) закрыта фарфоровой покрышкой 3 и залита трансформаторным маслом для улучшения теплоотвода и предотвращения вредного воздействия конденсированной атмосферной влаги. Конструкция ввода обеспечивает надежную его герметизацию, контроль уровня масла во вводе при эксплуатации не требуется.

В настоящее время завод ЗАО «Мосизолятор» выпускает вводы с бумажно-масляной изоляцией для трансформаторов с компенсацией изменения объемов масла газовой подушкой в верхней части корпуса компенсатора.

Объем газа герметично изолирован от внешней атмосферы и рассчитан для работы ввода в различных климатических условиях при максимальной нагрузке трансформатора.

Все герметичные вводы должны выдерживать давление 0,294 МПа (3 кгс/см2), оказываемое на масло, заполняющее ввод, в течение 1 ч, а негерметичные – 0,147 МПа (1,5 кгс/см2), в течение 0,5 ч при температуре окружающего воздуха не менее 10 °С.

В условном обозначении типов вводов используются буквы и цифры, которые указывают на определенные характеристики ввода (назначение, вид изоляции, напряжение, ток, климатическое исполнение и др.).

По назначению различают вводы для:

• трансформаторов (автотрансформаторов)Т;
• кабельного подключения трансформаторовкб;
• шунтирующих реакторовР;
• масляных выключателейВ;
• прохода через стены и перекрытия (линейные вводы)Л.

Вводы могут устанавливаться под углом от 0° до 90° относительно вертикальной оси.

В эксплуатации встречаются вводы с дополнительной емкостью «С2» (измерительный конденсатор) для подключения приборов измерения напряжения (П), либо без нее.

В настоящей типовой технологической инструкции рассмотрены высоковольтные вводы классов напряжений 35, 66, 110, 150, 220, 330, 500 и 750 кВ, рассчитанных на номинальные токи 200, 320, 400, 630, 800, 1000, 1250, 1600, 2000 и 2500 А.

По виду внутренней изоляции вводы бывают:

• с бумажно-масляной изоляциейБМ;
• с маслобарьерной изоляциейМБ;
• с твердой изоляцией: типа RBPТ;
типа RIPК.

Установленные в эксплуатации высоковольтные вводы выполнены с нормальной и усиленной внешней изоляцией. В последнем случае верхняя покрышка ввода имеет более развитую поверхность у выступающих ребер для увеличения длины пути утечки тока по поверхности фарфоровой покрышки. Вводы с усиленной изоляцией используются в районах с загрязненной атмосферой.

В зависимости от степени загрязнения окружающей среды, вводы различаются в соответствии с ГОСТ 9920-89 по категории внешней изоляции:

Источник: https://znaytovar.ru/gost/2/so_34466112005_tipovaya_texnol.html

Вводы для трансформаторов: описание. конструкция, проблемы эксплуатации

Ввод трансформаторов в эксплуатацию

Вводы для силовых трансформаторов – необходимые конструктивные элементы оборудования, к которым предъявляются особые технические требования.

Вводы бывают различных типов, они классифицируются по особенностям конструкции, наполненности маслом, типологии изоляции.

Безусловно, есть определенные проблемы эксплуатации в зависимости от вида элемента, а также основные методики контроля технологического состояния в зависимости от вида.

Назначение

Вводы для трансформатора являются необходимым элементом конструкции. Они предназначаются для изоляции выводимых концов обмотки и последующего крепления устройства к различным дополнительным приборам и элементам.

Выводов существует несколько десятков видов, при этом они различаются в зависимости от размеров и форм, мощности, напряжения, принципа установки, необходимых технических особенностей и другого.

Высоковольтный ввод представляет собой довольно простую конструкцию. Изолятор из фарфоровой пластин соединяется с фланцем из качественного чугуна. Последний необходим для того, что соединить ввод и крышку бака надежно и прочно.

Ток передается по медному стержню, именно он связывает обмотку с элементами оборудования. Изолятор по типу своей поверхности имеет мелкие ребра или даже полностью гладкий.

Также бывают варианты с зонтообразными ребрами на изоляторе, благодаря чем удается избежать разрядов на поверхности.

Ранее вводы трансформатора обладали такой конструкцией, которая не позволяла убрать их и заменить быстро. Приходилось снимать крышку или открывать активную часть бака, а уже потом снимать их и ремонтировать.

На новых трансформаторах устанавливаются вводы, которые имеют съемную конструкцию. Благодаря тому, что нет обойм и фланцев, их легко снимать и заменять на новые в случае необходимости, не поднимая сердечник.

Просто открывается устройство, которое прижимает ввод к крышке, а потом снимается уплотнительное кольцо. Ввод вынимается и заменяется.

Проблема работы вводов состоит в том, что появляется сильнейший магнитный поток. Особенно это касается оборудования, которое предназначается для работы с большими токами. Магнитное поле приводит к сильному нагреву крышки и фланцев.

Для избегания поломок, связанных с этим фактором, заменяют фланцы из стали и чугуна латунными.

Также для уменьшения нагрева к крышке размещают вводы совместно, при этом в одно отверстие, или же делают диаметр дырки для ввода больше, чтоб токовый стержень находился дальше.

Классификация и особенности конструкции

Конструктивные особенности изменяются в зависимости от требуемых технических характеристик и особенностей эксплуатации. Обязательно учитывается этот пункт, в противном случае трансформатор даже если и будет работать, то на эффективность и безопасность рассчитывать не стоит.

Составные

Составные вводы используются исключительно для трансформаторов с напряжением до 1000 В. Они состоят и двух или трех изоляторов из фарфора. При этом в отличии от маслонаполненных внутри полости тут нет масляного состава. Их применение в устройствах с большими показателями напряжения недопустимо.

Съемные

Конституция съемных вводов подразумевает, что понятно из названия, что их можно быстро вынимать и ставить обратно при необходимости.

Несъемные варианты подходят только для токов, которые сейчас не соотнесены значениям. Диаметр шпилек у старых образцов значительно меньше.

В тоже время съемные вариации отличаются большим диаметром шпилек, что позволяет увеличить показатели длительности рабочего тока.

Маслонаполненные

Трансформаторный ввод представляет собой два или три фарфоровых изолятора, внутри полости которых находится масло. Если речь идет о конфигурациях вводах с напряжением 110 кв или больше, то присутствует две крыши из фарфора. Они сочетаются между собой и крепятся втулкой. Часть внутри в масле, обязательно контролируется его расход.

Маслоподпорные

Маслоподпорные выводы отличаются особой герметичностью, но особенность состоит в том, что масло поступает при помощи специальной трубки, которая располагается непосредственно у самого ввода. Изоляция жидкого типа общая, то есть она с такими же химическим составом, что и трансформаторная. Используется исключительно для устройств с напряжением от 110 кВ.

С твердой изоляцией

Приборы с твердой изоляцией также герметичны и применяются для оборудования с большими мощностными показателями. По своим конструктивным особенностям схожи с вариантами масляными, однако у них нет нижней фарфоровой покрышки.

Проблемы эксплуатации

Проблемы с выводами безусловно коснуться трансформатора. Но специалистам требуется выявить причину и максимально постараться ограждать от нее устройства при последующем использовании.

Более 60 процентов от всех причин поломки силовых трансформаторов относятся к проблемам со вводами. Наибольшая часть — это оборудование высоковольтное от 110 кВ.

Типология, особенности повреждений зависят от конструктивных деталей внутри механизма и данных о напряжении. Показывают меньший процент поломок несъемные варианты, но их ремонт невозможен.

Чаще меняются приборы с большой мощностью нежели менее 100 кВ.

Присущие дефекты конструкции во многом различаются благодаря внутренней изоляции. Характерны для:

  • покрытой крышки маслом — механические повреждения и протекания из-за естественных факторов;
  • твердой изоляции с маслом — растекание, старение состава, повреждение фарфоровой крышки;
  • маслобарьерной изоляции — протекания в фарфоре, естественный износ и уменьшение внутренних показателей изоляции, нарушение работы прокладок и цилиндров;
  • бумажно-масляных изоляторов не герметичных — перекрытие, приводящее к пробою, уменьшение соединений на вводах, механические проведение, нарушение объема циркуляции масла, увлажнение или окисление узлов в местах течи масла;
  • бумажно-масляных изоляторов герметичных — естественное старение состава и выпадание осадка, затрудняющего работу, появление в составе алюминия и наблюдение вибрации, появление разрядов в зоне около крышки, уменьшение показателей давления.

В зависимости от технических характеристик ввода при плановом осмотре трансформатора специалист сверяется, не появились ли дефекты из вышеизложенного списка. Выделяют и другие причины приводящие к снижению чувствительности изоляционных материалов оборудования. Их объединили в четыре большие группы для удобства.

Электрическое старение

Электрическое старение относится к естественным природным факторам, приводящим к износу изоляции тс. Этот фактор представляет собой совокупность, в число которой входят и постоянное увлажнение, окислительные процессы, проявление частичных электрических токовых импульсов на поверхности, перманентное воздействие тепла.

Частые коммутации

Электроприводы, используемые в производстве, подразумевают воздействие на напряжение питающей сети. Появление гармоник и смена напряжения влечет за особой смену частотных коммутаций. К перенапряжение приводят и электроламповые выключатели, применяющиеся часто в совокупности на предприятиях.

Тяжелые режимы работы

Тяжелые режимы работы вызывают перегрев проводников. Как следствие, возникает износ изоляции и так называемый природный температурный износ. При тяжелых режимах работы оборудование применяется с четко ограниченным планом, когда оно функционирует, а когда отдыхает.

Особенности конструкции

Конструктивные нюансы, в особенности увлажнение, являются также частой проблемой вводов трансформаторов. Увлажнение характерно для тс, которые не относятся к герметичному типу. А вот в герметизированных установках превосходящая часть повреждений обусловлена снижением качества состава, а также появление частых электрических разрядов.

Любая проблема на начальном этапе не вызывает беспокойства и не приводит к резкому снижению эффективности устройства или выходу его из строя. На ранних стадиях проблемы наблюдается изменение состава масла, например добавление в него частиц алюминия. В итоге происходит разложение продуктов изоляции, которые приводят к пробою поверхности.

Это влечет за собой выход и строя и необходимость не только смены самих вводов, но и частиц деталей, прилегающих к ним, проверки конститутивных узлов трансформатора.

Основные методы контроля технологического состояния

Методик контроля несколько, к их числу относятся интегральные и дифференциальные. Эти типы различные по своему принципу действия, и они оценивает разные характеристики изоляции.

Например, интегральные направлены прежде всего на проверку в общем состояния ввода, а не на то, чтоб обнаружить и искоренить определенный дефект.

Используя их, вы будете уверены, что поломка найдется, но не конкретная область, а именно факт того, что она присутствует.

Тогда можно экстренно заменить ввод и не беспокоится о сохранности прибора. А вот дифференциальные направлены на то, чтоб устанавливать конкретное место поломки. В зависимости от характеристик проводимого исследования изменяются первичные установки, в том числе требуется или нет отключать оборудование из сети.

Интегральные

Интегральные методики позволяют проверить состояние устройства в целом. Они не направлены на то, чтоб определять поконкретнее местоположение поломки. Но они сигнализируют о том, что потребуется или полная замена ввода, если это возможно, или проверка дифференциальным методом дополнительно.

Измерение сопротивления изоляции

При помощи методики измерения сопротивления изоляции специалисты выявляют такие дефекты как увлажнение твердой изоляции и наличие загрязнений, в том числе пыли, грязи на поверхности, которые могут служить причиной уменьшения энергоемкости. Этот способ имеет ряд преимуществ, в то числе и то, что можно оценивать не только внешнее состояние и показатели изолятора, но и абсорбционные процессы, которые происходят внутри обмотки.

К недостаткам методики относят то, что трансформатор обязательно отключается при выполнении исследования.

Измерение диэлектрических потерь и емкости изоляции

Различают несколько видов измерения. Распространенное — это измерение тангенса и емкости по зонам устройства. Позволяют выявить то, есть ли частичные разряды в обмотке, насколько увлажнена твердая оболочка и не состарились ли масло. Особенности этой методики:

  • выявление общего и местного состояния;
  • невозможность выявить природу дефекта.

Также определяют зависимость тангенса и емкости от напряжения для выявления наличия разрядов. Методика довольно эффективная, но придется отключать приборы от сети.

А вот если проводится полное измерение, то при его помощи выявляются не только все вышеизложенные показатели, но и наличие пробоя теплового или ионизирующего характера.

Хорошая доля вероятности, но это не распространяется на выявление дефектов в масляном канале.

Кроме того, выявить можно и зависимости от температурных показателей. Методика позволяет определить состарилось ли масло и вероятность появления пробоя теплового характера. Единственным недостатком этой методики является то, что исследование должно проводится при различных температурных вариациях.

Анализ масла

Анализ состава масла выявляет разные характеристик и дефекты. При помощи физико-химического исследования определяется уровень увлажнения, перегрева, загрязнения и старения.

Анализ газовой составляющей поможет выявить дефекты строения молекул, а производных фурана — износ изоляции твердого типа. Способ эффективный, но нельзя исключать возможность загрязнения при взятии анализа.

Вводы должны быть тщательно очищены перед внедрением специального стеклянного шприца.

Измерение давления

Просмотр сведений о давлении выявляет в каком состоянии находится герметичность и наличие или отсутствие частичных разрядов в масляном составе. Измерение давления относится к простейшим процедурам, так как контроль не требуется. Но минус существенный — разряды выявляются только на их последней стадии.

Дифференциальные

Дифференциальные способы в отличии от интегральных направлены на выявление конкретной проблематики. Ими пользуются, когда интегральные методики дали положительный ответ.

Тепловизионное обследование

Данный вид исследования выявляет массу нарушений состояния проводников. К ним относят:

  • чрезмерный нагрев в местах подсоединения;
  • наличие контора короткозамкнутых типов;
  • уменьшение масляной составляющей во вводах;
  • влажность части остова и другое.

Методика действенная и популярная по причине того, что не нужно выключать оборудование в сети и проводить специального рода манипуляции перед анализом. Контролировать сдачу не нужно, так как все происходит в автоматическом режиме.

Информация наглядна и понятна даже не специалисту. Единственная проблема данного вида дифференциального контроля заключается в том, что можно проследить лишь верхнюю и среднюю часть ввода. Для обследования нижней способ не годится.

Регистрация (локализация) частичных разрядов

Локализация определяет характеристики состава, изменилось ли напряжение и наличие дефектов определенной части ввода. При помощи способа выявляются дефекты любой части. Минус в том, что понять типологию сигнала не всегда просто из-за возникающих помех.

Источник: https://OTransformatore.ru/silovoj/vvvody-dlya-transformatorov/

Ввод трансформаторов ТМ-630 в эксплуатацию

Ввод трансформаторов в эксплуатацию
Автоматизация мелиоративной насосной станции

Смонтированные щиты и пульты управления сдают в эксплуатацию одновременно с системой автоматизации после установки на них всех предусмотренных проектом приборов, ввод и подключения трубных и электрических проводок…

Геотермальная энергия и ее применение

8. Возможные проявления местной сейсмической активности в геотермальных районах после ввода в них в эксплуатацию ГеоТЭС

В ряде крупных геотермальных месторождений земного шара при скважинном извлечении геотермальных вод наблюдается местная сейсмическая активность в виде микроземлетрясений с магнитудой М, обычно не превышающей 4,5 балла…

Диагностирование асинхронных двигателей единых серий

4. Расчет годовых затрат на эксплуатацию

Наш электрический двигатель относится к 1-ой группе электрооборудования. По таблице 6[2] определим периодичность технического обслуживания Пто и диагностирования Пд , а также среднюю трудоемкость технического обслуживания Тто…

Монтаж и эксплуатация вакуумных выключателей

2.3 Сдача в эксплуатацию и ПСИ

Измерение сопротивления изоляции вторичных цепей и обмоток электромагнитов управления Таблица 1 Испытуемый элемент Напряжение мегаметра, В Наименьшее допустимое значение сопротивления изоляции, МОм 1…

Проектирование районной электрической сети

11.2 Определение ежегодных издержек на эксплуатацию

Рассчитаем издержки для радиально-магистральной сети (I), и с замкнутым контуром (II)…

Проектирование районной электрической сети

11.2 Определение ежегодных издержек на эксплуатацию электрической сети

Определяются технико-экономические показатели: ; алэп=2,4%, ап/ст=6,4%, орлэп=0,4%, орп/ст=3,0%. ;.; Tґ=/max=/kм2 Результаты расчетов сведены в таблицу 11.3. Определяются потери электроэнергии в трансформаторах, зависящие и независящие от нагрузки…

Проектирование систем электроснабжения предприятий железнодорожного транспорта

5.2 Определение издержек на эксплуатацию

Отчисления на амортизацию и обслуживание Таблица № 29. Радиальная схема № Вид оборудования Норма отчислений, % Капитальные затраты, тыс. рублей Издержки, тыс. рублей 1 Кабели 6,3 161 10,14 2 Строительная часть 6,3 47,38 2…

Проектирование электрической подстанции

f3. Выбор силовых трансформаторов и трансформаторов собственных нужд

Трансформаторы выбираем в зависимости мощности трансформатора. Параметры и число силовых трансформаторов выбираем согласно категории потребителя, число трансформаторов принимаем 2 т.к. потребители имеют I и II категорию по заданию…

Расчет комплекса релейных защит силового трансформатора

2.1.2Автоматический ввод резерва (АВР)

Общие сведения. Устройства АВР устанавливаются на подстанциях и распределительных пунктах, для которых предусмотрены два или более источника питания, работающих раздельно в нормальном режиме…

Расчет электрооборудования подстанции 500/220/10 кВ, ТЭЦ – 3*300МВт

4 Выбор электрооборудования выключателей, разъединителей, трансформаторов тока, трансформаторов напряжения, шин

Выбор выключателей и разъединителей на ОРУ 220 кВ Расчетные параметры, номинальные данные, условия выбора и проверки выключателей и разъединителей Таблица 4…

Техническое обслуживание трансформатора ТМ-630. Плановая замена масла

Ввод трансформатора ТМ-630 в работу

После выполнения подготовительных работ и получения разрешения на введение трансформатора в работу согласно программы на включение. Ввод в работу производится персоналом со строгим соблюдением ПБЭЭ…

Электрооборудование сталкивателя

3.4 Сдача-приемка в эксплуатацию

Сдача станка в эксплуатацию производится совместно механиками и наладчиками. При этом бригадир наладчиков заполняет журнал производства наладочных работ, в котором должны быть отражены все данные измерений устранение выявленных дефектов…

Электропитание и электроснабжение нетяговых потребителей

f4. Выбор автомата на ввод низкого напряжения

Выберем по максимально рабочему току НН: где Ко – коэффициент одновременности равный 0.7 согласно [1]. Для вводного аппарата НН в РЩ А, Б, В, Г выберем выключатель ВА51-37 с номинальным током выключателя 300А…

Электроснабжение промышленных предприятий

f4.Выбор числа мощности и расположения цеховых трансформаторов, трансформаторов гпп и компенсирующих устройств

Элементные водонагреватели

f4 Расчет годовых затрат на эксплуатацию

Наш электрический двигатель относится к 1-ой группе электрооборудо-вания. По таблице 6[2] определим периодичность технического обслужи-вания Пто и диагностирования Пд , а также среднюю трудоемкость техничес-кого обслуживания Тто…

Источник: http://fis.bobrodobro.ru/36644

Правовое Дело
Добавить комментарий